

Copyright Adeneo Embedded 2012 – All rights reserved Page | 1

System Benchmark Texas Instruments
platforms

By Valter Minute, Windows Embedded MVP and Senior Consultant at Adeneo

Embedded

Rev 1.0 – June 2012

Using the BMQ benchmark built using the ARMv4i and the ARMv7 compiler, we tested the
performance of the code generated by the two compiler starting from the same source code.

The BMQ benchmark provides five measurements:

1. Integer operations – Number of 1000 function calls (testing different integer operations)
which can be made during about 1 second.

2. Floating point operations – Number of 1000 function calls (testing different float operations)
which can be made during about 1 second.

3. Drawing operations – Number of some drawing operations made during about 4 seconds.

4. Windowing operations – Number of some windows operations made during about 10
seconds.

5. Memory operations – Number of read/write in the memory made during about 1 second.

The benchmark showed a 23% performance improvement in integer operations and a 19%
improvement in floating point operations. The results of the drawing, windowing and memory
operations were the same for the two versions. This led to an overall improvement (the “Total” index
provided by BMQ) of 8%.

Integer and floating point operations benefits from the use of the new instruction set and, for
floating point, use of the new VFP3 unit. This explains a good performance gain in those two
benchmarks.

The performance of drawing and windowing benchmarks depends on the operating system and, in
particular, on the degree of optimization of video drivers. The OS was the same for both tests so the
performance was not influenced by the compiler used. For the memory benchmark there is no
difference.

The Cortex-A8 core supports the NEON extension (support in the Cortex-A9 core is optional), which
provides instruction that can manipulate multiple data in a single instruction, but this extension is
not used in the code generated by the Microsoft compiler. It is possible to use those instructions for
optimized functions by linking assembly modules compiled by the ARMAsm tool provided in the
Platform Builder toolchain. The version of this tool included in the Windows Embedded Compact 7
toolkit can compile code that uses NEON opcodes.

Below are the raw results of the benchmarking tests.

Copyright Adeneo Embedded 2012 – All rights reserved Page | 2

The ARMv7 compiler improves the performances of the Integer and Floating point benchmarks of
around 20% on both platforms. This improvement is due to the usage of the new instructions set
and, for floating point, to the support of the new VFP3 floating point unit that is part of the Cortex-
A8, A9 and A15 processor cores. Applications that perform heavy calculations should get a good
performance improvement using the new compiler.

0

1000

2000

3000

4000

5000

6000

OMAP35-30 BB-XM

Integer

CE6 ARMv4i ARMv7

0

500

1000

1500

2000

2500

OMAP35-30 BB-XM

Float

CE6 ARMv4i ARMv7

Copyright Adeneo Embedded 2012 – All rights reserved Page | 3

The results of the drawing and window benchmarks is not impacted by the use of the new compiler.
This can be explained by the fact that those benchmarks execute a sequence of API calls and the
actual application code runs for a very small fraction of the benchmark time. On the other hand we
notice a good improvement in draw and window results moving from CE 6 to Compact 7 on the
OMAP 3530 platform. In this case BSP optimization and the improvements granted by Windows
Embedded Compact 7 can grant a better performance results for UI and graphics intensive
applications.

0

200

400

600

800

1000

1200

OMAP35-30 BB-XM

Draw

CE6 ARMv4i ARMv7

0

200

400

600

800

1000

1200

OMAP35-30 BB-XM

Window

CE6 ARMv4i ARMv7

Copyright Adeneo Embedded 2012 – All rights reserved Page | 4

The memory benchmark results are not improved by the new compiler. The new instructions
provided by the ARMv7 instruction set does not influence access to random memory locations.

This benchmark is also calling an API (through the “rand” library function). The Windows Embedded
Compact 7 implementation of this API seems to be less efficient of the CE 6.0 one and this may
explain the better performances on CE 6. On the other side, rand() main focus is to generate random
numbers that are not predictable, not in generating them quickly.

Conclusion

In conclusion we could notice that using Windows Embedded Compact 7 and the ARMv7 compiler
also for building application code can improve performances of a device.

The improvement rate depends on many factors, including also the optimization and quality of the
BSP that can improve graphics operation, increase the responsiveness of the system and decrease
the overhead for the CPU using hardware acceleration when available.

About the author

Valter Minute is a Windows Embedded MVP since 2009 and he has been working on Windows CE,
Windows CE.NET, Windows Embedded CE and Windows Embedded Compact since 1999. He’s part of
the Adeneo Embedded expert team and likes to “hack” any device that seems to have a
microprocessor. He has a blog about embedded software and Italian cooking at
http://geekswithblogs.net/WindowsEmbeddedCookbook.

0

1000

2000

3000

4000

5000

6000

7000

8000

OMAP35-30 BB-XM

Memory Rand

CE6 ARMv4i ARMv7

http://geekswithblogs.net/WindowsEmbeddedCookbook

